ultra bessel sequences in direct sums of hilbert spaces
Authors
abstract
in this paper, we establish some new results in ultra bessel sequences and ultra bessel sequences of subspaces. also, we investigate ultra bessel sequences in direct sums of hilbert spaces.specially, we show that {( fi, gi)}∞ i=1 is a an ultra bessel sequencefor hilbert space h ⊕ k if and only if { fi}∞ i=1 and {gi}∞ i=1 are ultrabessel sequences for hilbert spaces h and k, respectively.
similar resources
Ultra Bessel sequences in direct sums of Hilbert spaces
In this paper, we establish some new results in ultra Bessel sequences and ultra Bessel sequences of subspaces. Also, we investigate ultra Bessel sequences in direct sums of Hilbert spaces. <span style="font-family: NimbusRomNo9L-Regu; font-size: 11pt; color: #000000; font-s...
full textMultipliers of pg-Bessel sequences in Banach spaces
In this paper, we introduce $(p,q)g-$Bessel multipliers in Banach spaces and we show that under some conditions a $(p,q)g-$Bessel multiplier is invertible. Also, we show the continuous dependency of $(p,q)g-$Bessel multipliers on their parameters.
full textUnordered sums in Hilbert spaces
Let N be the set of positive integers. We say that a set is countable if it is bijective with a subset of N; thus a finite set is countable. In this note I do not presume unless I say so that any set is countable or that any topological space is separable. A neighborhood of a point in a topological space is a set that contains an open set that contains the point; one reason why it can be handy ...
full textBessel sequences in Sobolev spaces
In this paper we investigate Bessel sequences in the space L2(R s), in Sobolev spaces Hμ(Rs) (μ > 0), and in Besov spaces B μ p,p(R s) (1 p ∞). For each j ∈ Z, let Ij be a countable index set. Let (ψj,α)j∈Z, α∈Ij be a family of functions in L2(R). We give some sufficient conditions for the family to be a Bessel sequence in L2(R s) or Hμ(Rs). The results obtained in this paper are useful for the...
full textsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولMy Resources
Save resource for easier access later
Journal title:
wavelet and linear algebraPublisher: vali-e-asr university of rafsanjan
ISSN 2383-1936
volume 2
issue 1 2015
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023